
Introducing the Concept of Customizable Structured
Spaces for Agent Coordination in the Production

Automation Domain∗

eva Kühn, Richard Mordinyi, László Keszthelyi, Christian Schreiber
Space-based Computing Group
Vienna University of Technology

Argentinierstr. 8
1040 Vienna, Austria

eva,richard,laszlo,cs@complang.tuwien.ac.at

ABSTRACT
Tuple spaces are a common platform for the coordination
of agents. In the past years there have been several ap-
proaches of improving the concept of coordination via the
shared space. However, some of those concepts, like the Pro-
grammable Matching Engine, were primarily concentrating
on retrieving tuples from the space with improved query
techniques.

In this paper, we propose the concept of structured spaces,
so called Space Containers, which allow to store tuples in
a customizable structured way. The concept of a Space
Container allows a) to distinguish between the data needed
for coordination purposes only and the payload, b) enables
an explicitly structured way of storage and retrieval of the
stored data, and c) the realization of more complex coordi-
nation patterns. The benefits of the proposed approach are
a) less complex agent implementations, and b) the possibil-
ity of an efficient implementation of coordination issues.

We describe the architecture of the proposed approach,
explain the benefits of it by means of a scenario from the pro-
duction automation domain and show evaluation results.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Distributed Arti-
ficial Intelligence

General Terms
Design, Measurement, Performance

Keywords
Linda, Tuple Spaces, Coordination, Coordination Pattern,
Multi-Agent Systems, Production Automation

1. INTRODUCTION
∗The project is partly funded by TripCom (IST-4-027324-
STP project, http://www.tripcom.org).
Cite as: Introducing the Concept of Customizable Structured Spaces
for Agent Coordination in the Production Automation Domain, eva Kühn,
Richard Mordinyi, László Keszthelyi, and Christian Schreiber, Proc. of
8th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi
(eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In [9], Gelernter and Carriero promote a clear separation
between the computation model, used to express the compu-
tational requirements of an algorithm, and the coordination
model, used to express the communication and synchroniza-
tion requirements. They explain that these two aspects of
a system’s construction may either be embodied in a single
language or, as they prefer, in two separate, specialized lan-
guages. The latter approach has been realized in the Linda
coordination language based on the tuple space model [8].

Tuple Spaces [4] are an accepted platform for the purpose
of coordination of e.g. software agents [1]. In the recent
years, several frameworks have been developed in order to
coordinate agents more efficiently. In a nutshell, they fo-
cused on e.g. mobile agents support [19, 2], introduction
of subspaces [5], GRID environments [12, 14, 3], or improv-
ing the tuple matching mechanisms (Section 2.1) in order to
increase the number of possible tuples matching a specific
query.

In general, they refer to the same principles as described
in [8]. There, briefly, coordination is described as a process
of writing tuples and reading of tuples matching a specific
pattern. The principle of having an unstructured tuple space
with random, non-deterministic tuple access implies that the
usage of even slightly more complex coordination patterns
with ordering characteristics, like FIFO or LIFO, cannot be
handled by the coordination framework completely and re-
quires therefore additional actions of coordination manage-
ment taken by the participating agents. This on the other
hand would lead to the fact of an unclear separation between
computation model and the coordination model.

In this paper, we propose the concept of structured tu-
ple spaces by means of so called Space Containers [16]. A
Space Container allows the storage of entries (Section 5) in
a customizable structured, ordered way. Entries are data
structures of any type, and not restricted to tuples only.
The ordered, structured form of the space is achieved by
specific customizable Coordinators, an inherent component
of a Space Container. By distinguishing explicitly between
data needed for coordination purposes and the payload it-
self, a Space Container is capable of having its own specific
view on the space. Those coordination data is used by the
Coordinators to form their specific order of the entries, and
so representing the required form of coordination. Since it is
a specific, customized view on the entries in the space, these
views can be implemented in an optimized way regarding
the semantics and aim of the specific coordination pattern,

and thereby helping the agent to work efficiently.
The benefits of the concept are a) less complex agent im-

plementations since the separation between the computation
model and the coordination model is given, and b) the im-
plementation of efficient coordination sequences since the
Coordinator has been explicitly designed to support the re-
quired form of coordination.

The remainder of this paper is structured as the follow-
ing: section 2 summarizes related work, section 3 defines
the research questions, section 4 pictures the use case, sec-
tion 5 describes the concept and the architecture of Space
Containers, while section 6 discusses the evaluation results.
Finally section 7 concludes the paper and proposes further
work.

2. RELATED WORK
This section summarizes related work on the usage of tu-

ple spaces in the production automation domain and on tu-
ple retrieval approaches in tuple space implementations.

2.1 Tuple retrieval in Spaces
The Linda coordination model [8], developed in the mid-

1980’s by David Gelernter at Yale University, is the origi-
nator of the “space based system”. It describes the usage
of a logically shared memory, called tuple space, together
with a handful operations (out, in, rd, eval) as a commu-
nication mechanism for parallel and distributed processes.
Principally, the tuple space is a bag containing tuples with
non-deterministic rd and in operation access. A tuple is
buildup of fields containing a value and its type, whereby
unassigned are not permitted, e.g. a tuple with three fields
is < “point”, 12, 67>, where “point” is of type string and 12
resp. 67 are of type integer.

The defined operations allow placing tuples into (out) the
space and querying tuples from the space (rd and in). The
difference between rd and in is that rd only returns a copy of
the tuple, whereas in removes it as well from the tuple space.
Both operations return only a single tuple and will block
until a matching tuple is available in the tuple space. There
are also non-blocking versions of the rd and in operation,
called rdp and inp, which return an indication of failure
instead of blocking, when no matching tuple is found [25].

The Linda model requires the specification of a tuple as
an argument for both query operations. In such a case,
the tuple is called template that allows the usage of a wild-
card as the field’s value. A wildcard declares only the type
of the seeked field, but not its value, e.g. the operation
rd(“point”, ?x, ?y) would return a tuple, matching the size,
the type of the fields and the string “point”. A tuple con-
taining wildcards is called an anti-tuple. If a tuple is found,
which matches the anti-tuple, the wildcards are replaced by
the value of the corresponding fields. The non-deterministic
rd and in operation semantics comes from the fact that in
case of several matching tuples a random one is chosen.

Implementations that support the above mentioned ex-
act tuple matching are: Blossom [22], JavaSpaces [7], LIME
[19], MARS [2] and TuCSon [5]. Although both MARS and
TuCSoN enable the modification of the operations’ seman-
tics by adding so called reactions, they can not influence
the way how tuples are queried. JavaSpaces adds subtype
matching to the exact tuple matching mechanism to query
objects from the space.

The drawback of exact tuple matching is that all collabo-

rating processes must be aware of the tuple’s signature they
use for information exchange. Hence, there are several tuple
space implementations that offer additional queries mecha-
nisms, such as TSpaces [26, 18], XMLSpaces.Net [21] and
eLinda [24]. TSpaces offers the possibility to query tuples
by named fields or by specifying only the field’s index and a
value or wildcard. Furthermore, TSpaces allows the defini-
tion of custom queries by introducing the concept of facto-
ries and handlers. Both TSpaces and XMLSpaces.Net sup-
port the use of XML-documents in tuple fields and there-
fore enable the use of several XML query languages such
as XQL or XPath. In addition, XML-Spaces.Net uses an
XML-document like structuring for its space, which allows
the utilization of sophisticated XML queries on the space.
eLinda [24] enables the usage of more flexible queries, via its
Programmable Matching Engine (PME), such as maximum
or range queries. Beside these queries the PME also pro-
vides aggregated operations that allow the summary or ag-
gregation of information from a number of tuples, returning
the result as a single tuple. The PME allows, like TSpaces
with its concept of custom factories and handlers, the simple
definition of custom matchers [24].

It can be concluded, that all previously introduced tuple
space implementations have in common that the stored tu-
ples have no ordering. Furthermore, they do not guarantee
which tuple is returned by a query, it may happen that due
to the non-deterministic semantics of the Linda operations
a tuple is never returned although it would match the query.

2.2 Multi-Agent Systems in Production Automa-
tion

Hierarchical or centralized structures are mostly used by
present manufacturing systems. Therefore, they are inflexi-
ble and not able to react effectively and efficiently to unfore-
seen disturbances. The decentralized control architecture
concept of Multi Agent Systems (MAS) [11] is well suited to
address these kinds of problems because they provide mod-
ularity, improved flexibility and robustness against failures
[15].

The coordination of agents is still a key issue in Multi-
Agent Systems, and a basic approach is to use tuple space
based coordination frameworks. Furthermore, the tuple space
based architecture can be used for coordinating test agents
in a Multi-Agent test framework as proposed in [27]. They
introduce the usage of “reactive” tuple space systems, which
allow the definition of “reactions” that are triggered by spe-
cific event occurrences. A reactive tuple space systems re-
alizes a hybrid coordination model that combines the clean-
ness and elegance of data-driven coordination models and
the flexibility and the power of control-driven ones [1].

3. RESEARCH QUESTIONS
In this paper, we propose the concept of structured spaces,

so called Space Containers, which allow to store tuples in a
customizable structured way. Based on the limitations of
the traditional tuple space model with respect to coordina-
tion forms requiring ordered tuples and on recent projects
with industry partners from the production automation, we
derived the following research questions:

R.1 - Concept of Space Containers: Investigate a)
the advantages and limitations of the Space Container sup-
ported form of coordination capabilities, and b) whether the
proposed concept allows reducing the complexity of agent

implementations while supporting at the same time more
complex coordination patterns. What are the major differ-
ences between the structured space approach and the tradi-
tional tuple based form of coordination?

R.2 - Efficient implementation of coordination pat-
terns: Investigate to what extent the usage of Coordinators
and Selectors help to coordinate efficiently. Does the con-
cept of separating coordination data and payload contribute
to an overall efficiency improvement?

For investigating these research issues, we gathered re-
quirements from a set of reasonable industry case studies in
the production automation domain. Then we designed and
implemented a new space-based coordination framework1

based on the Space Container concept.

4. SCENARIO
In the following, we describe a scenario from the produc-

tion automation domain (Figure 1) [23]. The system consists
of several different software agents each being responsible for
the machine representing. Such an agent may be

a pallet agent (PA) representing the transportation of a
production part and knowing the next machine to be reached
by the real pallet,

a crossing agent (CA) routing pallets towards the right
direction according to a routing table,

a conveyor belt agent (CBA) transporting pallets,
with optionally dynamic speed control, from one crossing
agent to another,

a strategy agent (SA) which, based on the current us-
age rate of the production system, knows where to delegate
pallets, so that by taking some business requirements, like
order situation, into consideration, a product is created in
an efficient way,

or a facility agent (FA) which specifies the point in time
when machines have to be turned off for inspection.

Figure 1: Production Automation System

One of the major challenges in production automation is
the need to become more flexible in order to support the
fast and efficient reaction to changing business and market
needs. However, the overall behavior of the many elements
in a production automation system with distributed control
can get hard to predict as these heterogeneous elements may
interact in complex ways (e.g., timing of redundant fault-
tolerant transport system and machines) [17].

1to be downloaded at http://www.mozartspaces.org

An approach towards fast reactions may be the prioriti-
zation [20, 13] of pallets. Some special parts of the product
with higher priority have to be favored by the agents rather
than pallets with lower priority. This approach may help
to a) produce a small number of products quickly, or b)
to phase out products as soon as possible in order to free
resources for brand new products to be assembled.

Therefore, the aspect of priority has to be considered be-
tween all neighboring CAs and all CBAs connecting them.
In the described scenario a CA has to check first, whether
there is a pallet with high priority on one of the transporting
conveyor belts. If this is the case, that particular CBA may
speed up its transportation speed as well as the CA may
force the other conveyor belts to stop. This may happen by
e.g. either not handling any pallets coming from them and
so forcing those CBAs to stop, or by requesting the other
CBAs to halt. So, the high priority pallet is being routed
earlier than the other pallets, and it has overtaken other
pallets which may have occupied machines needed by the
prioritized pallet based on its production tree. In section 6
it will be shown how the Space Container concept helps the
agents cooperate in order to cope with this requirement.

5. ARCHITECTURE
This section pictures the architecture of a Space Container

in detail. It describes the interfaces, supported operations,
the way of execution of operations, the handling of Selectors,
and the aim of Coordinators.

5.1 Space Container
In its basic form a Space Container is similar to a tuple

space. It is a collection of entries accessible via a basic API.
The difference is that a Space Container a) may be bounded
to a maximum number of entries, b) allows the usage of
so called Coordinators (Section 5.3) with each having its
specific and optimized view on the stored entries, and c) as
in Linda (out, in, rd) it provides an API for reading, taking,
and writing entries, but extends the original Linda API with
the methods destroy, shift and notify.

5.2 Space Container Architecture
A Space Container is composed of two layers with different

functionality. These layer are the Blocking Layer, and the
Container Engine. Figure 2 illustrates the architecture of a
Space Container and the position of the layers. The Con-
tainer Engine also has to manage the Coordinators which
are as well depicted in the figure as Random-, FIFO-, and
PRIO Coordinator. The Random Coordinator contains the
references to all existing Entries in the Space Container and
returns an arbitrary Entry in case of read operations. The
FIFO Coordinator imitates a queue. It stores on the lowest
index the reference to the Entry that has been in the Space
Container the longest and on the highest index the reference
to the Entry that has been added last. The PRIO Coordina-
tor groups references to Entries according to their priority.
In the following, each aspect of the figure is described in
greater detail.

Space Container Entries: The data items that are
stored in a Container are called ”‘Entries”’. An Entry can
be either of type Tuple or of type AtomicEntry. A Tuple
contains other Entries, which can be either AtomicEntries
or other Tuples. An AtomicEntry is a Generic Java class,
so when it is instantiated, the class that is contained within

S
p

a
c

e
 C

o
n

ta
in

e
r

 I
n

te
r

fa
c

e

C
o

n
ta

in
e

r

 E
n

g
in

e

Entry E1

Entry E2

Entry E3

Entry E7

Entry E6

Entry E4

Entry E5

B
lo

c
k

in
g

 L

a
y

e
r

Random
E1

E2 E7
E3

E5

E4
E6

PRIO
Prio | ObjRef

1
2
3

E2
E7, E5

E3

FIFO
Index | ObjRef

1
2
3
4
5
6
7

E1
E2
E7
E3
E5
E4
E6

Operation

Figure 2: Architecture of a Space Container with a
Random-, a FIFO-, and a PRIO Coordinator and 7
entries

the AtomicEntry can be defined.
Space Container Interface: This interface2 is used by

agents to communicate with the Space Container and to ex-
ecute API operations on the Space Container. Space Con-
tainers support bulk operations as well, so that it is possible
to insert multiple entries into a Space Container resp. to
read/take multiple entries out of it within one operation.
The number of entries to be retrieved or to be written is
specified in the Selector that is used for the operation.

Beside the fact that read and take operations may be used
for synchronization, as both offer a blocking behavior if no
suitable entries to be read/taken are in the Space Container,
also the write operation may block. A write operation blocks
if there is no space left for the Entry in the Space Container
or if the same Entry already exists. On the other hand, a
shift operation behaves like a write but instead of blocking it
will replace as many Entries in the Space Container as many
Entries are needed to be written, thus a shift operation is
a write operation that never blocks. Which Entries to be
deleted, so that the new Entries can be written, depend
on the Selectors specified in the operation. In addition, a
destroy operation behaves like a take operation but does
not return the removed entries.

Every operation that can block has an optional timeout
parameter, which represents the maximum time the opera-
tion shall be retried in case it has to be blocked. An opera-
tion with timeout 0 is executed exactly once and in case it
cannot be fulfilled it will not block. An operation with infi-
nite timeout will wait until it can be fulfilled successfully.

Blocking Layer: The blocking layer handles the blocking
of operations if this is necessary. The Blocking Layer anal-
yses and executes the operation on the Space Container. If
the operation was not successful and has to be blocked, the
blocking layer stores the operation in an internal data struc-
ture. Later on, when an operation is issued the Blocking
Layer removes the operation from its internal data struc-

2the complete API JavaDoc can be found at
http://www.mozartspaces.org/1.0-alpha/docs/api.html

ture and executes it again.
Container Engine: In this layer the management and

the correct sequence of execution of the Coordinators is per-
formed. The Space Container Interface supports defining
multiple Selectors for one operation. The Container Engine
has to make sure that the execution of the operation between
the participating Coordinators is done correctly.

5.3 Coordinators
Coordinators are the programmable part of the Space

Container and are responsible for managing their view on the
Entries in the Space Container. The aim of a Coordinator is
to represent a coordination model. Each Coordinator has its
own internal data structures which help him to perform its
task. Since the coordination model to be realized is known
beforehand, the Coordinator can be implemented in an effi-
cient way with respect to its task. Additionally, any number
of Coordinators can be added to a Space Container, but a
Space Container has at least a Random Coordinator, which
is added automatically, to simulate the non-deterministic
operation access of Linda.

Coordinators are independent of each other and may be-
long to one of the following classes:

• Implicit Coordinators have a complete view over all ex-
isting Entries in the Space Container. Each Entry that
shall be written or removed is passed along with the
operation to the Coordinator. Based on only these two
pieces of information, the Implicit Coordinator should
be capable of managing its view. Coordinators of this
class are ones which may want to maintain an order of
the Entries in the Space Container, and so represent-
ing e.g. FIFO, LIFO, RANDOM, or LRU coordination
models.

• Explicit Coordinators are those which require addi-
tional meta information for managing the view on the
Space Container and their internal data structures.
This means that at the time of writing the order of En-
tries in the Space Container can be influenced from the
outside. Furthermore, a certain Entry can be picked
out using the given ordering when reading elements
from the Space Container. This kind of meta informa-
tion has to be provided by the user and is passed to
the Coordinator by means of the Coordinator’s Selec-
tor. Examples for such Coordinators may be a Map
Coordinator representing a key, value data-structure,
where the meta information would be the value of the
key, or a Vector Coordinator where the meta informa-
tion is the position where the Entry should be placed,
or Coordinators representing e.g. Binary-Trees, or B-
Trees, where the meta information is the index that
is used to build up the tree. Other Coordinators may
use GPS-Positions as meta information.

• Matching Coordinator are implicit Coordinators with
the limitation that they need meta information in case
of read operations. The meta information would be
in case of a Template Coordinator the template for
Linda matching, or an XPath expression in case of an
XML Coordinator, or SQL-queries in case a of an SQL
Coordinator that is capable of executing such queries
on the Space Container.

5.4 Selectors
For every available Coordinator there is a certain Selector

that represents the counterpart to this Coordinator. Selec-
tors contain parameters (like a counter for the minimum
number of Entries to be retrieved) for queries in case of a
read, take, destroy access. In case of writing Entries they
contain a) the parameters specifying the appropriate Coor-
dinators and influencing it with special values, and b) the
Entry to be added to the Space Container. In case of write
operations to Implicit Coordinators there are no additional
parameters necessary by definition.

Multiple Selectors can be used within one operation. If
more than one Selector is used, the outcome of the first Se-
lector execution will be used as input to the second and so
on. Selectors, have a count parameter, indicate the num-
ber of entries which have to be returned. For example, if
a Random Selector with count 10 is used together with a
Key Selector with value ”X”, the Container Engine asks the
Random Coordinator to select ten random entries and af-
terwards it asks the Key Coordinator to look whether one
out of these ten Entries is referenced by the key ”X”. If an
Entry can be found, it is returned. Otherwise, the operation
is blocked until the selection can be fulfilled or the timeout
of the operation expires.

5.5 Execution of Operations
In the Space Container concept the sequence of Selectors

in an operation is AND concatenated. This means that it
makes a crucial difference if 10 Entries are randomly se-
lected and then a template matching is performed or that a
template matching is done first and then the Random Co-
ordinator tries to find ten Entries non-deterministically. As
a consequence, the execution of the operations in the Con-
tainer Engine is described briefly:

• write: first, the write operation is issued on all Ex-
plicit Coordinators for which a Selector has been pro-
vided. Afterwards, the write operation is executed on
all remaining Implicit Coordinators regardless if a Se-
lector has been provided to one of those Coordinators
or not.

• read: the read operation iterates over the Selectors
and invokes the read operation on the corresponding
Coordinator. Each Coordinator gets the result of the
execution of the previous Selector as an argument.
This is necessary because multiple Selectors are evalu-
ated using the Boolean AND operation.

• take: this operation uses read operation first to deter-
mine which entries have to be deleted. Afterwards, it
issues the delete operation on all Coordinators which
store a reference on the Entries which shall be deleted.

• destroy: is performed exactly as a take operation,
but with the exception that the result is dropped in
the Blocking Layer.

• shift: first, the shift operation is issued on those Ex-
plicit Coordinators for which a Selector has been pro-
vided. It is possible that an Explicit Coordinator can
not decide which Entry to remove. For instance, a
Key Coordinator can shift an Entry only if the key
which shall be used to store the new Entry is already

in use. In this case, the Coordinator throws an excep-
tion, and the Container Engine logs that the shift op-
eration could not be performed successfully with this
Coordinator. Whether or not, Explicit Coordinators
could remove Entries, the shift operation is issued on
all Implicit Coordinators. Finally, those Explicit Co-
ordinators are executed again which failed at the first
attempt.

6. EVALUATION
In section 3 we have defined two research questions, deal-

ing with the questions whether a) the complexity of coor-
dination can be shifted away from the agent in order to let
the agent focus on computational issues and b) the concept
of Space Containers allow an efficient implementation and
execution of coordination models. In order to answer these
questions, we have implemented, based on the scenario from
the production automation domain, and evaluated the pri-
oritized queue coordination pattern.

Simplified, the scenario can be summarized as the follow-
ing: entries have to be ordered by means of the sequence of
writing and grouped according to the priority of the entry
written. Then, the task is to remove the entry first written
from the non-empty group with the highest priority.

Figure 3 depicts on the left side how the Linda space ap-
proach would realize the coordination problem. The right
side of the figure shows the realization with a Space Con-
tainer containing a PRIO-FIFO Coordinator. Additionally,
both diagrams show the sequence to write an Entry and to
take the next Entry with the highest priority from the FIFO
perspective.

As it can be seen, the Linda space approach requires much
more operations than the Space Container approach. This
is because the realization of a prioritized queue requires the
modeling of the problem with the resources of Linda and
the help of the agent taking over a part of the coordina-
tion problem with the following operations in the presented
order:

Op. 1.: in("in-token", 1, ?int)

Op. 2.: inp("msg", 1, 3, ?P)

Op. 3.: out("in-token", 1, 3)

Op. 4.: in("in-token", 2, ?int)

Op. 5.: inp("msg", 2, 3, ?P)

Op. 6.: out("in-token", 2, 4)

In order to get the Entry with the highest available pri-
ority, the tuple space approach must traverse the priorities,
starting with the highest. To do so, each priority needs a
special token, so that concurrent agents can access the space
in a synchronized way. The token for priority one is taken
(Op. 1) retrieving the index (3) of the first Entry in the

queue. Next, a pattern matching for messages (ḿsg)́ with
priority 1 and index 3 is initialized (Op. 2). Since the at-
tempt to take was not successful the process is started again
from the beginning, but in this iteration the next higher pri-
ority is used. If an entry was found (Op. 5) the index of the
queue is increased by one and written back into the space.

In case an Entry should be added to the queue, the fol-
lowing steps have to be performed by an agent:

Op. 7.: in("out-token", 2, ?int)

Op. 8.: out("msg", 2, 5, P)

Op. 9.: out("out-token", 2, 6)

< „msg“, 2, 3, P >

< „msg“, 2, 5, P >

< „msg“, 2, 4, P >

< „msg“, 3, 6, P >

< „in-token“, 2, 3 >

< „msg“, 3, 5, P >

Agent A2

Agent A1

< „in-token“, 2, 4 >

O
p.

 1
.

O
p.

 4
.O
p.

 2
.

O
p.

 3
.

O
p.

 5
. O
p.

 6
.

< „in-token“, 2, 3 >

< „out-token“, 2, 5 >

O
p.

 8
.

O
p.

 7
.

< „out-token“, 2, 6 >

O
p.

 9
.

PRIO
2
2
2
3
3

FIFO
3
4
5
5
6

Agent B2Agent B1

w
rit

e(
2,

 P
)

Entry
P
P
P
P
P

re
ad

()

Space Container Interface

Complex coordination with the traditional Linda approach Complex coordination with Space Containers

Figure 3: Comparing the complexity of a prioritized queue of the traditional Linda space approach with the
Space Container concept (P..payload)

The last index of the queue has to be retrieved (Op. 7),
the message with the appropriate priority and index written
(Op. 8), and the retrieved token, with increased index by
one, written back.

On the other hand, the Space Concept requires the exe-
cution of one operation only. In case of retrieving the next
Entry with the highest priority, the agent has to know the
name of the Coordinator, and execute the operation (Op.
S2).

Op. S1.: write(new PRIOFIFOSelector(2,P))

Op. S2.: read(new PRIOFIFOSelector())

In case of writing, the agent has to know the name of the
Coordinator, and the priority of the payload. As it can be
seen, the complexity of the agent, the number of operations
to be executed, could be reduced by shifting the complexity
of coordination into the Space Container.

The second part of the evaluation deals with the ques-
tion if the concept of Space Containers allow an efficient
implementation and execution of coordination models due
to the distinction between the data needed for coordination
purposes only and the payload.

Entries Linda Improved-Linda PRIO-FIFO
10000 5.24ms 0.41ms 0.20ms
20000 15.15ms 0.50ms 0.20ms
30000 47.93ms 0.57ms 0.21ms
40000 58.66ms 0.63ms 0.20ms
50000 70.10ms 0.66ms 0.21ms

Table 1: Comparing the time of retrieving a single
Entry using the prio-queue coordination principle
implemented by means of different Space Container
Coordinators

Therefore, we measured the time that is required to re-
trieve the next Entry, with highest priority, from a priori-
tized queue. A benchmark has been set up, which compares

the performance of a simple Linda Coordinator, a Linda
Coordinator with improved data structures and a PRIO-
FIFO Coordinator. The benchmark should demonstrate
that by using the knowledge about the aim of prioritized
queues a PRIO-FIFO Coordinator is able to retrieve Entries
faster than a Coordinator with Linda pattern matching tech-
niques. The difference between the Linda Coordinator and
the improved-Linda Coordinator is the adapted data struc-
ture used to store Entries. The Linda Coordinator is using
a common HashMap, with the entries’ ID as key, whereas
the improved-Linda Coordinator uses a data-structure op-
timized to the characteristics of Linda template matching
taking the signature of the tuple into account.

In order to run the benchmark the Space Container was
first filled with a specific amount of Entries (10000, 20000,
30000, 40000 and 50000 Entries). After that a single read
operation was issued, and the time needed to get the En-
try measured. The machines characteristics on which the
benchmarks were executed are listed in table 2.

Processor AMD AthlonTM 64 X2 Dual Core 6400+
(each core with a frequency of 3.2GHz)

Main memory 2GB
OS Ubuntu 8.04 32bit

JavaTM Ver-
sion

1.6.0 07-b06

Table 2: Machine’s characteristics used for all
benchmarks

The results of the benchmark are presented in table 1,
clearly showing that the PRIO-FIFO Coordinator is con-
stantly the fastest of all three, followed by the improved
Linda Coordinator. Due to the usage of a hashtable in the
Linda Coordinator the results of the benchmark are not lin-
early increasing. The reason is that the hashvalue is com-
puted from the Entry’s ID, which is changing each time an
Entry is instantiated, and which specifies the position of the

Entry in the hashtable.

7. CONCLUSION AND FUTURE WORK
In this paper, we described the concept of structured spaces,

so called Space Containers, which allow to store tuples in
a customizable structured way. We derived two research
questions and answered them based on the evaluation of a
scenario from the production automation domain:

Concept of Space Containers: The concept of Space
Containers has moved the complexity in case of coordination
models with ordering characteristics away from the agent to
the proposed coordination framework. The complexity of
a coordination issue is concentrated at one point enabling
a clear separation between the computation model and the
coordination model again. By moving the complexity into
the Space Container the exemplary scenario can be reduced
to a single operation call.

Efficient implementation of coordination patterns.
The evaluation showed that the distinction between coordi-
nation data and payload improves the efficiency of coordi-
nation significantly. This is due to the fact, that a) the aims
of the Space Container is known beforehand and therefore it
can be implemented efficiently with respect to the coordina-
tion model it is representing, and b) the coordination data
can be used additionally to optimize data retrieval from the
Space Container.

Future work contains the realization of more sophisticated
coordination patterns [10, 6], like the auction or market
place pattern, based on the proposed Space Container ap-
proach.

8. ACKNOWLEDGEMENT
This work has been partially funded by the Complex Sys-

tems Design & Engineering Lab, Vienna University of Tech-
nology (http://www.informatik.tuwien.ac.at/csde/). The
authors would also like to acknowledge the works of the
Rockwell Automation Research Center, Czech Republic, in
the field of the Manufacturing Agent Simulation Tool (MAST).

9. REFERENCES
[1] G. Cabri, L. Leonardi, and F. Zambonelli. Reactive

tuple spaces for mobile agent coordination. In MA ’98:
Proceedings of the Second International Workshop on
Mobile Agents, pages 237–248, London, UK, 1998.
Springer-Verlag.

[2] G. Cabri, L. Leonardi, and F. Zambonelli. Mars: a
programmable coordination architecture for mobile
agents. Internet Computing, IEEE, 4(4):26–35,
Jul/Aug 2000.

[3] S. Capizzi. A tuple space implementation for
large-scale infrastructures. Technical report,
Department of Computer Science, University of
Bologna, March 2008.

[4] N. Carriero and D. Gelernter. Linda in context.
Commun. ACM, 32(4):444–458, 1989.

[5] M. Cremonini, A. Omicini, and F. Zambonelli.
Coordination and access control in open distributed
agent systems: The tucson approach, 2000.

[6] D. Deugo, M. Weiss, and E. Kendall. Reusable
patterns for agent coordination. pages 347–368, 2001.

[7] E. Freeman, K. Arnold, and S. Hupfer. JavaSpaces
Principles, Patterns, and Practice. Addison-Wesley
Longman Ltd., Essex, UK, UK, 1999.

[8] D. Gelernter. Generative communication in linda.
ACM Trans. Program. Lang. Syst., 7(1):80–112, 1985.

[9] D. Gelernter and N. Carriero. Coordination languages
and their significance. Commun. ACM, 35(2):97–107,
1992.

[10] S. C. Hayden, C. Carrick, and Q. Yang. A catalog of
agent coordination patterns. In AGENTS ’99:
Proceedings of the third annual conference on
Autonomous Agents, pages 412–413, New York, NY,
USA, 1999. ACM.

[11] N. R. Jennings and M. J. Wooldridge. Agent
Technology: Foundations, Applications and Markets.
Springer Verlag, 1998.

[12] Y. Jiang, G. Xue, Z. Jia, and J. You. Dtuples: A
distributed hash table based tuple space service for
distributed coordination. Grid and Cooperative
Computing, 2006. GCC 2006. Fifth International
Conference, pages 101–106, Oct. 2006.

[13] K. Kemppainen. Priority scheduling revisited -
dominant rules, open protocols and integrated order
management. PhD thesis, Acta Universitatis
oeconomicae Helsingiensis. A, December 2005.

[14] M. Kinga and C. Adrian. Glinda - grid-based
distributed linda system. Symbolic and Numeric
Algorithms for Scientific Computing, 2007. SYNASC.
International Symposium on, pages 349–352, Sept.
2007.

[15] R. Kishore, H. Zhang, and R. Ramesh. Enterprise
integration using the agent paradigm: foundations of
multi-agent-based integrative business information
systems. Decision Support Systems, 42(1):48–78, Oct.
2006.

[16] E. Kühn, R. Mordinyi, and C. Schreiber. An
extensible space-based coordination approach for
modeling complex patterns in large systems. 3rd
International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation,
Special Track on Formal Methods for Analysing and
Verifying Very Large Systems, 2008.

[17] A. LÃijder, J. Peschke, T. Sauter, S. Deter, and
D. Diep. Distributed intelligence for plant automation
based on multi-agent systems: the pabadis approach.
Production Planning and Control, 15:201–212, 2004.

[18] T. J. Lehman, A. Cozzi, Y. Xiong, J. Gottschalk,
V. Vasudevan, S. Landis, P. Davis, B. Khavar, and
P. Bowman. Hitting the distributed computing sweet
spot with tspaces. Comput. Netw., 35(4):457–472,
2001.

[19] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime:
A coordination model and middleware supporting
mobility of hosts and agents. ACM Trans. Softw. Eng.
Methodol., 15(3):279–328, 2006.

[20] C. Rajendran and O. Holthaus. A comparative study
of dispatching rules in dynamic flowshops and
jobshops. European Journal of Operational Research,
116(1):156–170, July 1999.

[21] R. Tolksdorf, F. Liebsch, and D. M. Nguyen.
Xmlspaces.net: An extensible tuplespace as xml
middleware. In In Report B 03-08, Free University

Berlin,
ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-0308.pdf,
2003. Open Research Questions in SOA 5-25 and
Loose Coupling in Service Oriented Architectures,
2004.

[22] R. van der Goot, J. Schaeffer, and G. V. Wilson. Safer
tuple spaces. In COORDINATION ’97: Proceedings of
the Second International Conference on Coordination
Languages and Models, pages 289–301, London, UK,
1997. Springer-Verlag.

[23] P. Vrba. Mast: manufacturing agent simulation tool.
Emerging Technologies and Factory Automation, 2003.
Proceedings. ETFA ’03. IEEE Conference, 1:282–287
vol.1, Sept. 2003.

[24] G. Wells, A. Chalmers, and P. Clayton. Extending the
matching facilities of linda. In COORDINATION ’02:
Proceedings of the 5th International Conference on
Coordination Models and Languages, pages 417–432,
London, UK, 2002. Springer-Verlag.

[25] G. C. Wells. Coordination languages: Back to the
future with linda. Proceedings of the Second
International Workshop on Coordination and
Adaption Techniques for Software Entities (WCAT05),
pages 87–98, 2005.

[26] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and
D. A. Ford. T spaces. IBM Systems Journal,
37(3):454–474, 1998.

[27] D. Xu, X. Bai, and G. Dai. A tuple-space-based
coordination architecture for test agents in the mast
framework. In SOSE ’06: Proceedings of the Second
IEEE International Symposium on Service-Oriented
System Engineering, pages 57–66, Washington, DC,
USA, 2006. IEEE Computer Society.

